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ABSTRACT: One of the most challenging tasks in modern
medicine is to find novel efficient cancer therapeutic methods with
minimal side effects. The recent discovery of several classes of
organic molecules known as “molecular jackhammers” is a
promising development in this direction. It is known that these
molecules can directly target and eliminate cancer cells with no
impact on healthy tissues. However, the underlying microscopic
picture remains poorly understood. We present a study that utilizes
theoretical analysis together with experimental measurements to
clarify the microscopic aspects of jackhammers’ anticancer
activities. Our physical-chemical approach combines statistical
analysis with chemoinformatics methods to design and optimize
molecular jackhammers. By correlating specific physical-chemical properties of these molecules with their abilities to kill cancer cells,
several important structural features are identified and discussed. Although our theoretical analysis enhances understanding of the
molecular interactions of jackhammers, it also highlights the need for further research to comprehensively elucidate their
mechanisms and to develop a robust physical-chemical framework for the rational design of targeted anticancer drugs.

■ INTRODUCTION
Despite significant progress in developing new cancer treat-
ments, methods to reliably eradicate different types of tumors
continue to be out of reach. Chemotherapy drugs and radiation
therapy have dramatically increased cancer patient’s survival
rates,1−5 but the collateral damage to healthy cells during their
applications lead to dangerous side effects.6−11 Considering the
limitations of current cancer treatments, a new therapy that
minimizes toxicity to healthy cells while effectively targeting
and destroying cancer cells could offer significant benefits.
Recent experimental studies revealed that several classes of

organic molecules based on aminocyanines, known as
molecular jackhammers (MJHs), undergo whole-molecule
concerted vibrations upon exposure to near-infrared (NIR)
light.12,13 Upon absorbing a photon in the NIR range, these
molecules exhibit collective electron oscillations, also known as
a molecular plasmon, that stimulate them to be expanded and
contracted longitudinally and axially with large amplitudes.14

The molecular plasmon is a collective electronic oscillation in
the molecule that couples with the whole-molecule vibration in
a concerted manner.14 This property of concerted longitudinal
and tangential motion is known as vibronic-driven action
(VDA) since the electronic and vibrational oscillations are
coupled. When the MJH associates with a cell membrane,
experiments found that these vibrations might break the
cellular membrane, eventually leading to cell death.13 The

ability to mechanically destroy cancer cells while having low
toxicity to healthy cells is further strengthened by the relatively
high penetration depth of the NIR light in human tissues
compared to other waves of the electromagnetic spectrum.15

The unique properties of MJH in the selective eradication of
cancer cells stimulated significant efforts to create a new
anticancer therapy based on the action of jackhammers.
However, our understanding of how MJH functions remains
vague, slowing down the development of such a new method.
The ability of a molecule to undergo coordinated vibronic
motion depends heavily on the molecular structure, and the
insertion or deletion of even one atom can drastically affect the
mode.16 Thus, quick examination and chemical intuition are
frequently not sufficient to correctly predict the VDA of a
molecular jackhammer, while the advanced computational
methods like Density-Functional Theory (DFT) calculations
needed to predict the existence of molecular plasmons are
prohibitively time- and resource-intensive given a very large
number of potential candidate molecules.13
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The additional complexity in studying the mechanisms of
action of MJH comes from the fact that some properties
currently can only be evaluated in experiments. The VDA is
closely associated with a quantity known as the Experimental
Plasmonicity Index (EPI).16 Not every organic molecule can
behave as a molecular plasmon since specific chemical
structure, size, and charge are required to allow the collective
electron oscillations.16 The EPI is a measurement that predicts
and estimates the plasmonic character of an organic molecule.
The higher the EPI, the higher the corresponding plasmonicity.
Briefly, the EPI is obtained by measuring the optical response
of its plasmon resonance as a function of the dielectric constant
of the medium. The EPI is a predictive tool that can be utilized
to obtain structure−activity relationships in MJH by examining
their EPI values, VDA activity, and chemical structures.
However, the EPI is only limited for structures that are
measured experimentally and not for untested or theoretical
structures. In addition, the EPI does not predict the toxicity of
aminocyanines for healthy human cells. This means that the
ratio of VDA to toxicity, known as the therapeutic index (TI),
cannot be predicted from the EPI. The inability to predict TI
based on structure alone inhibits the ability of synthetic
chemists to identify and produce molecules which are likely to
be effective for cancer therapy.
Our previous experimental studies allowed us to introduce

several empirical rules on how to improve VDA activity. More
specifically, we concentrated on VDA IC50, which is the
concentration required to permeabilize the cell membrane in
50% of the cell population.16 Thus, a low-value VDA IC50
corresponds to a more potent jackhammer molecule. To find
the molecules with higher potency, as explained above, we
developed an empirical descriptor of the strength of VDA
activity, the EPI.16 It measures the ability of the MJH to
polarize (“polarizability”) in the solvent upon excitation with
light.16 It was found that EPI serves as a good predictor for the
structure−activity relationships of plasmon-driven MJHs, with
higher EPI values correlating with increased VDA efficacy in
the mechanical disruption of the cancer cells.16

In this paper, we investigate the mechanisms of MJH by
using a novel physical-chemical approach that is driven by a
hypothesis that anticancer activities of MJH correlate with
some specific physical-chemical properties of these molecules.
We propose a theoretical framework supported by exper-
imental observations that allows us to identify the most
important physical-chemical features that correlate with the
potency, toxicity, and EPI of different MJH molecules. Using
correlation analysis, we determined key molecular features that
exhibit strong correlations with the anticancer properties of
jackhammers. Analyzing each of these selected features allows
us to explain the connection between them and particular
functional groups in the MJHs. Finally, we demonstrate that
this physical-chemical method holds predictive power for
synthesizing new therapeutically effective molecular jack-
hammers. This methodology has the potential to guide the
rapid development of a minimally invasive and safe NIR
therapy for cancer treatment and help bring this technology to
maturity.

■ MATERIALS AND METHODS
Measurement of VDA Activity of Molecules Targeting

A375 Human Melanoma Cells. The specific details of the
methods have been already described before.16 The LED lights
for the activation of VDA were the 730 nm LED (model UHP-

F-730) and 630 nm LED (model UHP-F-630) illumination
systems obtained from Prizmatix, Israel. The list of different
molecular jackhammers and their experimentally determined
properties are assembled in Table 1.

Cell culture of A375 human melanoma. The A375 cell line was
obtained from ATCC (CRL-1619). Cells were cultured in 10
cm polystyrene tissue culture dishes (Corning) containing
DMEM with L-glutamine, 4.5 g/L glucose, and sodium
pyruvate (Corning Inc. 10013CV) and supplemented with
10% FBS (Corning, 35010CV), 1X MEM vitamin solution
(Gibco, 11120052), 1X MEM nonessential amino acid
solution (Gibco, 11140050), and penicillin/streptomycin.
Typically, 0.5−1 million cells are inoculated per dish and
cultured for 2−3 days in an incubator at 37 °C and 5% CO2.
When confluency reached nearly 90%, cells were harvested and
transferred into a new dish. For harvesting, cells are detached
with 0.05% trypsin-EDTA (Gibco, 25-300-054).
Vibronic-driven action (VDA) activity. A375 cells were

cultured as described before. The cells were inoculated at 2
million cells per dish (10 cm polystyrene tissue culture dishes)
and cultured for 2 days. They were harvested using 0.05%
trypsin−EDTA (Gibco, 25-300-054), and then the cells were
prepared in a cell suspension containing 2 × 105 cells/mL in
DMEM media with L-glutamine, 4.5 g/L glucose, and sodium
pyruvate (Corning Inc. 10013CV) and supplemented with
10% FBS (Corning, 35010CV), 1X MEM vitamin solution
(Gibco, 11120052), 1X MEM nonessential amino acid
solution (Gibco, 11140050), and penicillin/streptomycin. 1
mL of this cell suspension containing 2 × 105 cells was used in
each treatment. In a 1.5 mL Eppendorf tube, 1 μL of stock
solution containing 2 mM Cy7.5-amine (or other cyanine
molecule or other concentrations) in DMSO (Fisher, 99.7%)
was placed in the bottom of the tube, then 1 mL of the cell
suspension was added into the tube to get a final concentration
of 2 μM of Cy7.5-amine containing 0.1% DMSO and 2 × 105
cells. The mixture was then incubated at 37 °C and 5% CO2
for 30 min. Then, 1 μM DAPI was added to the cell
suspension, and the cell suspension was transferred to a 35 mL
polystyrene tissue culture dish.
The cells were immediately treated under NIR light at 730

nm and 80 mW/cm2 or 630 nm LED for the Cy5-amine and

Table 1. Summary of Anti-cancer Activity Data for
Corresponding Molecular Jackhammers; VDA, Toxicity,
and EPI Values Were Obtained from Reference 15

Molecule VDA IC50 (μM) Toxicity IC50 (μM) TI EPI

BL-204 0.12 0.6 5.0 4.6
GL-308-2 0.125 0.5 4.0 4.5
BL-141-2 0.15 0.75 5.0 2.5
BL-142 0.18 2.5 13.89 1.9
Cy7.5-amine 0.25 0.5 2.0 3.2
GL-291-2 0.27 1.5 5.56 1.8
BL-141-1 0.3 0.125 0.42 3.6
GL-297-2 0.75 1.0 1.33 N.A.
GL-286 1 2.875 2.88 N.A.
GL-176 1.2 0.25 0.21 2.6
Cy5.5-amine 2 2.0 1.0 1.1
GL-261-2 3 2.0 0.67 N.A.
Cy7-amine 3.5 2.0 0.57 2.4
GL-328-2 5 7.0 1.4 N.A.
Cy5-amine 8 6.2 0.8 0.9
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Cy5.5-amine, over 10 min using LED light sources (Prizmatix,
UHP-F-730 or UHP-F-630, Israel) that cover the entire dish.
The instrument for flow cytometry analysis (SONY, MA900
Multi-Application Cell Sorter) was already set up and
calibrated by the time the light treatment was finished.
Therefore, as soon as the 10 min light treatment was
completed, the cell suspension was rapidly transferred from
the 35 mm dish to a flow cytometry tube, and the cells were
analyzed for DAPI permeabilization and Cy7.5-amine binding.
It took 30 s to load the sample and to start cell counting. The
permeabilization of cells was measured as DAPI-positive cells
and occurred immediately. The light intensity was measured
using an Optical Power Meter from Thorlabs, sensor model
S302C, and console model PM100D. The same protocol was
repeated for all MJH molecules in the library.
Experimental Plasmonicity Index (EPI). The EPI has

been described before.16 It is an experimental method that
measures the plasmonic character of each molecule based on
the optical response of the molecule to the polarity of the
solvent. Molecular plasmons are associated with electron
oscillations in the excited molecule, which are highly
polarizable by the polarity of the solvent. Therefore, changes
in the dielectric constant (κ) of the solvent significantly affect
the polarizability of the electrons and therefore should affect
the resonance frequency. These changes in the resonance
frequency are observed as a change in the absorption spectrum.
To evaluate the EPI, each molecule was solubilized in various
solvents at 2.7 μM, and the UV−vis spectrum was measured.
We opted to choose a variety of solvents with a wide range of
dielectric constants: isopropanol (κ = 19.92), ethanol (κ =
24.55), methanol (κ = 32.7), water (κ = 80.1), and DMSO (κ
= 46.68). Then the dielectric constant was plotted against the
absorption coefficients at the λmax of the longitudinal molecular
plasmon for each molecule.13,16 A linear correlation was
observed for the data points. The EPI is the slope of the linear
correlation function multiplied by a factor of −1000 to obtain
integer positive values since the slope is negative, namely, EPI
= −1000 × slope.
Crystal Violet Viability Assay for Cell Toxicity. The

crystal violet viability assay was used to measure cell viability/
toxicity.17 The working principle of this method is that the
viable cells adhere to the surface of the cell culture dish while
growing and remain attached through the standard cell culture
conditions and during the staining step. In contrast, the dead
cells do not adhere to the surface of the cell culture dish, do
not grow, and detach easily during the manipulation steps of
the assay.
A375 cells were harvested and counted and then diluted at 2

× 105 cells/mL to 1 mL of cell suspension. In a 1.5 mL
Eppendorf tube, 1 μL of stock solution containing 2 mM
Cy7.5-amine (or other cyanine molecule at different
concentrations) in DMSO (Fisher, 99.7%) was placed in the
bottom of the tube, then 1 mL of the cell suspension was
added into the tube to obtain a final concentration of 2 μM of
Cy7.5-amine containing 0.1% DMSO and 2 × 105 cells. Then,
100 μL of the cells (2 × 104 cells) were placed in a 96-well
plate. Typically, 7 to 10 concentrations were prepared in
quadruplicated samples in a 96-well plate. Then, the cells were
cultured for 2 days at 37 °C and 5% CO2. At the end of the
incubation, the media was removed and the cells were washed
with 150 μL of PBS once. The cells were stained with 100 μL
of 0.5% w/v crystal violet solution in methanol/water (1:1) for
15 min. Then, the crystal violet was removed, and the excess

crystal violet was washed away with water. The cells attached
to the 96-well plate were dried at room temperature. Then, the
crystal violet in each well was solubilized in 100 μL of 3.3% w/
v acetic acid in water. The extracted crystal violet was
quantified by its absorbance at 570 nm in a 96-well plate reader
(Tecan model Infinite 200 PRO, Austria GmbH). The cell
viability was calculated from the absorbance relative to the
absorbance in the cells without any treatment; cells without
treatment were normalized to 100% cell viability.
Extraction of Molecular Descriptors. Our goal is to

design molecular jackhammers with optimal anticancer proper-
ties. This includes higher potency (low VDA IC50 value) and
least toxicity (high toxicity IC50 value). For this purpose, we
have to identify which molecular features correlate most with
the optimal therapeutic activity. A molecular descriptor, or
molecular feature index, is the numerical output that comes
from applying a mathematical procedure to translate the
chemical data encapsulated in a molecule’s symbolic
representation.18 Molecular descriptors are extensively used
in drug discovery research to predict compound activity,
toxicity, and pharmacokinetics.19 They are crucial in QSAR
(Quantitative Structure−Activity Relationship) modeling,
which connects molecular structure with biological activity or
physical-chemical properties.20,21

By utilizing the Mordred package22 version 1.2.0, we
extracted 1826 descriptors for each molecule provided in a
recognized chemical file format named SMILES.23 These
features fall into three main categories. First, constitutional
descriptors, which are the simplest and relate to the molecule’s
composition without considering the molecular connectivity or
shape. They include information such as the count of specific
types of atoms, molecular weight, the number of electrons in
each atom, and the count of various functional groups. The
second type of molecular descriptors is topological (or 2D),
which are calculated based on the 2D structure of the
molecule, represented as a graph. This category includes
autocorrelation descriptors, which evaluate how different
atomic properties (such as charge or electronegativity) are
correlated with each other across the molecular graph. Other
topological descriptors might include molecular connectivity
indices, Wiener numbers, and Randic ́ indices. And, the third
group of molecular descriptors are physical-chemical features,
which include a range of properties like lipophilicity,
polarizability, refractivity, and electronic properties. A com-
plete list of Mordred descriptors is provided in Table 3 of ref
22.
Representing molecules using numerical descriptors as

points in a multidimensional space allows for evaluating the
similarity of two molecules. There are several methods,
including cosine similarity and Euclidean distance, for
characterizing similarity in high-dimensional space.24 This
method is particularly useful in cheminformatics for tasks such
as virtual screening, where the goal is to identify molecules
with properties similar to a reference molecule.25 Representing
two arbitrary molecules A and B molecules as two vectors A =
A1, A2, ..., An ]and B = [B1, B2, ..., Bn ], respectively, we can use
cosine similarity formula to calculate the cosine of the angle Θ
between vectors A and B:
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Since the scales of physical-chemical features for each
molecule are different, it is important to normalize them to
have their values to be between 0 and 1. To normalize these

quantities, we use z z z
z z
( )

( )
min

max min
= . With this scaling, since the

physical-chemical features cannot be negative, the cosine
similarity is bounded in [0,1]. When the vectors are completely
aligned, the cosine similarity is 1, indicating identical descriptor
profiles and, presumably, very similar molecular properties. If
the vectors are orthogonal, the cosine similarity is 0, suggesting

no similarity between the molecular descriptors of the two
molecules. Consequently, the cosine similarity depends only
on the angle between the vectors, and not on their magnitudes.

■ RESULTS AND DISCUSSIONS

In Figure 1, we present the results of cosine similarity
calculations for all pairs of molecules given in Table 1. For two
molecules, BL-204 and BL-141-2, with identical TI of 5, the
cosine similarity is equal to 0.96. Likewise, we obtain a
significantly low cosine similarity when we compare BL-204
and BL-141-2 with two molecules with low TI, GL-176 (TI =
0.21) and Cy5-amine (TI = 1). Moreover, cosine similarity sets
GL-176 (with the lowest TI = 0.21) apart from other
molecules (red cross in Figure 1). These results suggest that

Figure 1. Cosine similarity (eq 1) of the molecular jackhammers as listed in Table 1. Each colored box represents the corresponding similarity of a
pair of two different molecules.

Figure 2. a) Distribution of Spearman correlation coefficients for all molecular descriptors that correlate with VDA IC50 of jackhammers. b)
Relative importance of molecular descriptors, which highly correlated with the corresponding VDA IC50 values. A threshold value of ρ = 0.77 was
used. Definitions of the selected features can be found in ref 22.
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structural similarity might have a predictive power for the
therapeutic index of molecular jackhammers.
Current efforts in drug discovery predominantly rely on

structure−activity relationships (SAR), where the biological
effects of a potential drug are predicted based on the known
activities of similar compounds.26 This approach employs a
quantitative structure−activity relationship (QSAR), which
assumes the following relationship,

FBiological Activity (Molecular Descriptors)= (2)

Predicting structure−activity relationships with acceptable
accuracy requires a huge amount of data. In our case, since we
have only a few tested molecules (see Table 1), we limit our
analysis to identifying the strongest correlations that may
warrant further study. To elucidate such correlations, we utilize
Spearman’s rank correlation coefficient, which is defined as
Pearson’s correlation coefficient between the ranks of
anticancer activity (including potency, toxicity, EPI, and TI),
R(A), and ranks of molecular descriptor, R(MD),

r
R A R MD R A R MD

R A R A R MD R MD

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
s 2 2 2 2

=
(3)

The Spearman’s rank correlation coefficient is a tool used to
assess how effectively a monotonic function can capture the
relationship between two variables. Consequently, it serves as a
practical method for analyzing the correlations between two
quantities. We computed the Spearman’s rank correlations
between VDA IC50 of molecules and each of their descriptors.
The corresponding histograms of correlation coefficients are
shown in Figure 2a. Correlation coefficients range from −1 to
1. We are specifically interested in features that are strongly
correlated with vibronic-driven activity (VDA IC50). Thus, we
set three conditions for the selection of important molecular
descriptors. First, we choose an arbitrary threshold ρ for
Spearman’s correlation, such that |rs| ≥ ρ. Second, to ensure
that correlations are statistically significant, we consider only p-
values of less than 0.005. The third condition is that the
minimum and maximum values of the selected molecular
descriptor must correspond to the minimum and maximum
values of VDA IC50, respectively. In other words, the
relationship between VDA IC50 and the selected features are
expected to be either monotonically increasing or decreasing.
The selected features, which correspond to a threshold of

0.77, are presented in Figure 2b. A similar analysis was
performed for toxicity IC50 and EPI (see the Supporting

Information). Now let us provide a physical-chemical
interpretation of the selected features in Figure 2b. Among
those features, ATSC stands for Autocorrelation of Topo-
logical Structure Centered, and AATSC represents Averaged
Autocorrelation of Topological Structure Centered, with their
definitions provided as follows. For a molecule with N atoms,
the centered Moreau−Broto Autocorrelation of Topological
Structure (ATSC) measures the correlation between physical-
chemical properties of atom i and atom i + d (according to the
SMILES structure),22

ATSC d P P P P( ) ( ) ( )
i

N d

i i d
1

= ·
=

+
(4)

where Pi and Pi+d are physical-chemical properties of atom i
and atom i + d, respectively. Also, P P

N i
N

i
1

1= = is the average
physical-chemical property of the molecule. Since this method
involves centering the property P values by subtracting the
mean, the resultant autocorrelation values can be both positive
and negative. The parameter d is the topological distance over
which autocorrelation is calculated. The unit of topological
distance is not a physical length but rather a unitless count of
the number of bonds between two atoms. It is a purely
mathematical concept used in graph theory and cheminfor-
matics to describe the connectivity of a molecule. Alternatively,
one can define the averaged centered Moreau−Broto
autocorrelation for a specific distance d, AATSC(d),22

AATSC d
N d

P P P P( )
1

( )( )
i

N d

i i d
1

=
=

+
(5)

ATSC(d) is the sum of topological distances between all pairs
of atoms in a molecule that are d bonds apart. Thus, N − d is
simply the count of these pairs of atoms. With these
definitions, the relationship between the two autocorrelation
functions reads as

AATSC d
ATSC d

N d
( )

( )=
(6)

In Figure 3, we plotted VDA IC50 of MJHs versus two
autocorrelation functions that characterize the number of
sigma electrons (Figure 3a) and the number of valence
electrons (Figure 3b). The importance of ATSC(d = 7) for
sigma electrons lies in the fact that molecules with the lowest
potency (IC50 = 8 μM) and the molecule with the highest

Figure 3. Elucidating the correlations between VDA IC50 of molecular jackhammers and two selected molecular descriptors. a) Centered Moreau−
Broto autocorrelation (as defined in eq 4) of lag 7 [ATSC(d = 7)] weighted by sigma electrons with Spearman’s correlation rs = 0.79 and p =
0.0005. This descriptor is labeled as ATSC7d in Mordred. b) Centered Moreau−Broto autocorrelation of lag 7 [ATSC(d = 7)] weighted by valence
electrons with Spearman’s correlation rs = 0.78 and p = 0.0006. This descriptor is labeled as ATSC7dv in Mordred.

22
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potency (IC50 = 0.12 μM) correspond to the maximum and
minimum values of this descriptor, respectively (Figure 3a and
Figure 4). A positive ATSC(d = 7) value indicates that the

numbers of sigma electrons for atoms at a topological distance
of 7 bonds tend to be uniformly distributed. In contrast, a
negative autocorrelation suggests that atoms at the distance of
7 bonds tend to have very different numbers of sigma
electrons. The specific distance d = 7 reveals unique aspects of
electron distribution in MJH that might not be evident when
considering atoms closer together or further apart. Similar
arguments can be given for the dependence of VDA IC50 on
the autocorrelation of valence electrons (Figure 3b). We
elucidated the correlations between ATSC(d = 7) of sigma
electrons versus ATSC(d = 7) of valence electrons (see Figure
S4 in the SI). Pearson’s correlations of 0.68 and a p-value of
0.005 are obtained. This indicates a moderate to strong
positive linear relationship between autocorrelations of sigma
electrons and autocorrelations of valence electrons.
It is important to note that while sigma electrons, a subset of

valence electrons, are involved in forming strong sigma bonds,
which provide structural stability to molecules, the rest of the
valence electrons (including pi electrons) can participate in

various types of weaker bonds and interactions. These
interactions are significant in molecular absorption and
emission properties, which are influenced by the electronic
transitions involving these electrons. For the VDA, both the
strict bonding provided by sigma electrons and the more
dynamic behavior of other valence electrons are critical. The
latter can be influenced by NIR light, leading to induced bond
vibrations and subsequent light-driven vibronic activities,
which are central to the phenomena observed and reported
in our study.
While molecular potency, which is measured by VDA IC50, is

an important feature that characterizes the light-driven activity
of molecular jackhammers against cancer cells, it is also crucial
to consider the toxicity of these molecules. Toxicity is simply
defined as the half maximal inhibitory concentration (IC50) of
molecular jackhammers in the absence of light-driven activity.
Thus, the therapeutic index (TI) is the ratio of toxicity IC50
and VDA IC50 values. Results of correlation analysis for toxicity
IC50 are presented in the Supporting Information (see Figure
S2). To analyze the toxicity, we selected two important
molecular descriptors: the average centered Moreau−Broto
autocorrelation for van der Waals volume and the ionization
potential of atoms at a distance of 3. The dependence of
toxicity (IC50) versus these descriptors is presented in Figure 5.
To understand the relationship between the molecular

toxicity and the distribution patterns of van der Waals volumes
and ionization potentials in the atoms in MJH, we can present
the following arguments. The van der Waals volume is the
volume occupied by a molecule and is one of the most
fundamental properties of the drug structure controlling
biological activity. The molecular size and shape, which are
important for the drug−receptor interaction, are generally
determined by the van der Waals volume of the molecule.
Among many other molecular descriptors, it has been long
recognized that the toxicity behavior of drug molecules is
significantly correlated with the van der Waals volume.27,28

This is in agreement with the findings of our theoretical
method, which predicts high correlations of the toxicity and
the van der Waals volume. The ionization potential was also
identified to have a high correlation with the toxicity. This is in
agreement with the literature observations.29 One can argue
that since the ionization potential has been recognized as one
of the fundamental parameters that define the redox properties

Figure 4. Chemical structures of jackhammer molecules with
maximum and minimum potency and EPI values. (top left) BL-204
with IC50 = 0.12 μM and EPI = 4.6; (top right) Cy5-amine with IC50
= 8 μM and EPI = 0.9; (bottom) GL-297-2 with IC50 = 0.75 μM.

Figure 5. Elucidating the correlations between toxicity of the molecular jackhammers and selected molecular descriptors. a) Averaged Moreau−
Broto autocorrelation (as defined in eq 5) of lag 3 [AATSC(d = 3)] weighted by van der Waals volume with Spearman’s correlation rs = −0.7 and p
= 0.0035. This descriptor is labeled as AATS3v in Mordred. b) Centered Moreau−Broto autocorrelation of lag 3 [AATSC(d = 3)] weighted by
ionization potential with Spearman’s correlation rs = 0.7 and p = 0.0036. This descriptor is labeled as AATS3i in Mordred.
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of a drug, it clearly governs the enzymatic metabolic activation
and the toxicity of a molecule.29

Another important characteristic of molecular jackhammers
is the EPI, which directly measures the vibronic activity of a
molecule exposed to NIR light. It is important to note that EPI
is directly proportional to the potency of molecules, i.e., it is
inversely proportional to VDA IC50. Using our theoretical
method, we analyzed correlations between EPI of molecular
jackhammers and molecular descriptors, and the correspond-
ing results are in the Supporting Information. Two of the
important descriptors that correlate with EPI are ATSC(d = 8)
weighted by Sanderson electronegativity and ATSC(d = 8)
weighted by Allred−Rocow electronegativity (Figure 6).
Electronegativity, which is a measure of an atom’s ability to
attract and hold onto electrons, plays a crucial role in
determining a molecule’s electronic structure, and thus its
optical properties. Unlike other physical properties such as
charge and mass, electronegativity cannot be directly
measured. Since its quantification relies on theoretical models,
there are various definitions for the electronegativity of atoms.
Sanderson’s electronegativity focuses on the equalization of
electron densities within a molecule, emphasizing the average
electron density in the valence shell.30 Allred−Rochow
electronegativity is calculated based on the effective nuclear
charge acting on valence electrons and the distance to the
nucleus, offering a more electrostatic perspective.31 As a result,
these scales yield different numerical values and are used for
different applications in Chemistry. Each molecule has unique
NIR-active modes depending on its structure and composition.
The distribution of electronegativity of atoms across the
molecule plays an important role in defining these modes.
Thus, molecules with nonuniform electronegativity distribu-
tions might have complex absorption spectra and can exhibit
specific behaviors under NIR light.
In Figure 4, structures of two different molecular jack-

hammers with maximum (BL-204) and minimum (Cy5-
amine) potency are illustrated. One can see that there are
significant topological differences between these molecules.
Cy5-amine features a lengthy arm predominantly composed of
single bonds, whereas BL-204 contains more ring structures
characterized by alternating single and double bonds, thereby
enhancing conjugation. It seems that more electronically
conjugated molecules possess stronger anticancer abilities, and
the correlations with the distributions of electronegativities, as
discussed above, reflect this observation.

It is also important to discuss how the selected molecular
features can aid in designing new molecular jackhammers with
optimal anticancer activities. Because of the strong relationship
between EPI and VDA, future synthesis of molecular
jackhammers ought to be guided by the likely EPI of candidate
molecules. Molecular jackhammers share a common overall
structure consisting of a central chain, side functional groups,
and arms extending from the two nitrogens at the end of the
central chain, but each of the major features can be one of
several different functional groups. New molecules could be
proposed algorithmically, and features strongly correlated with
EPI could be checked before any synthesis is done. For
example, the ATSC of lag 8 weighted by Sanderson
electronegativity could be checked for a candidate molecule
very similar to one already tested, but with an indole replaced
by a benzoindole (effectively adding another benzene ring to
one end of the molecule). If the descriptor in question is lower,
then the correlation in Figure 6 indicates that the candidate
molecule is likely to have a higher EPI (and therefore VDA)
than the molecule it was based on. Such automated screening
can be enacted on hundreds of thousands of potential
molecules, with the most promising molecules being
synthesized and tested. Additional results could be fed into
the analysis of this paper, leading to more and more accurate
predictions. Synthesizing new chemicals requires many hours
of specialized work, so the ability to rank candidate molecules
with even a moderate degree of confidence could save
countless hours of trial and error in the laboratory.

■ SUMMARY AND CONCLUSIONS
In this study, we presented a new idea that the physical-
chemical features of molecular jackhammers correlate with
their therapeutic anticancer potency and toxicity. This idea was
realized by performing a statistical correlation analysis that
highlighted the critical role of molecular descriptors in
understanding the underlying mechanisms. The application
of the Mordred software framework for extracting molecular
descriptors has enabled us to obtain a comprehensive analysis,
revealing strong correlations between specific molecular
features and the activities of MJHs, such as VDA, toxicity,
and the EPI.
Our analysis revealed that only a few molecular descriptors

highly correlate with VDA potency of molecular jackhammers.
Specifically, it was found that distribution of both sigma
electrons and valence electrons of atoms throughout each

Figure 6. Elucidating the correlations between EPI of the molecular jackhammers and two selected molecular descriptors. a) Centered Moreau−
Broto autocorrelation (as defined in eq 4) of lag 8 [ATSC(d = 8)] weighted by Sanderson electronegativity with Spearman’s correlation rs = −0.86
and p = 0.00061. This descriptor is labeled as ATSC8se in Mordred. b) Centered Moreau−Broto autocorrelation of lag 8 [ATSC(d = 8)] weighted
by Allred−Rocow electronegativity with Spearman’s correlation rs = −0.85 and p = 0.00081. This descriptor is labeled as ATSC8 are in Mordred.22
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molecule might have strong connections with the vibronic-
driven activity. Autocorrelations of sigma and valence electrons
highlight aspects of the molecular structures related to the
electronic delocalizations in single (sigma) bonds and double
bonds (sigma and pi). The distribution pattern of sigma
electrons and valence electrons, as quantified by ATSC(d = 7),
are primarily involved in forming the molecule’s basic bonding
framework. This distribution can influence the molecule’s
overall electronic environment, which is crucial for absorbing
NIR light and undergoing subsequent electronic transitions.
Moreover, the distribution of sigma electrons and valence
electrons affects the molecule’s electron density, polarity, and
other electronic properties, which in turn can impact how
efficiently it can undergo vibronic transitions when exposed to
NIR light. A molecule with a specific pattern of sigma and
valence electron distribution, as indicated by its ATSC(d = 7)
value, might be more or less effective at absorbing NIR light
and undergoing efficient vibronic transitions. For instance, a
more uniform distribution of sigma electrons (a higher positive
ATSC(d = 7) value) might lead to different vibronic activity
compared to a molecule with an uneven distribution (indicated
by a lower or negative ATSC(d = 7) value). Molecules that
more effectively absorb NIR light and undergo beneficial
vibronic transitions may be more potent in their anticancer
effects. Thus, the ATSC(d = 7) descriptor could indirectly give
insights into which molecules might be more effective in NIR-
light-activated anticancer therapies.
Moreover, we found that the pattern of electronegativities of

atoms strongly correlate with the EPI. The ability of a molecule
to absorb NIR light is primarily determined by its electronic
structure, specifically the energy gap between its electronic
states. The distribution of electronegativities in a molecule
affects its electronic structure by influencing the energy levels
of molecular orbitals. Different electronegativities can lead to
variations in orbital energies, potentially creating electronic
states that are accessible with NIR light. Electronegativity
differences between atoms in a molecule lead to the formation
of dipole moments. These dipole moments are crucial for the
interaction of the molecule with light and support the
formation of molecular plasmon, a collective electronic
oscillation that couples with a whole molecule vibrational
mode in MJH. In NIR spectroscopy, for instance, transitions
between different vibrational states are often dipole-allowed,
meaning they require a change in the dipole moment of the
molecule. The nonuniform distribution of electronegativity
affects these moments and thus increases the likelihood of such
transitions.
While our theoretical-experimental approach is able to

determine specific molecular properties of jackhammers that
correlate most with their anticancer abilities, it is important to
consider the limitations of this study. Our analysis was
performed on a small number of data. Advanced statistical and
machine learning methods are needed to establish a stronger
relationship between molecular descriptors and anticancer
activities of molecular jackhammers. Given the small data set,
methods such as linear regression for modeling and principal
component analysis (PCA) for dimensionality reduction can
be particularly useful.32 Additionally, leave-one-out cross-
validation (LOOCV) can also be utilized for model
validation.33 Future studies should continue to develop and
refine chemoinformatics methods to further improve the
robustness of the results and design of effective chemical
compounds including but not limited to MJHs by systemati-

cally considering various molecular features in relation to
specific metrics of efficacy (toxicity, VDA, and EPI in this
case). It is particularly essential to develop robust methods for
small data sets. Moreover, additional analyses are needed for
addressing certain aspects of cancer such as drug resistance and
tumor heterogeneity. Yet the proposed framework can guide
researchers on this path.
The presented framework holds significant promise for the

rational development of new cancer therapies and the
enhancement of existing anticancer molecules investigated in
this study. By leveraging chemoinformatics methods, we can
systematically analyze molecular descriptors and uncover
critical structural features associated with therapeutic potency
and toxicity. This knowledge enables the rational design and
optimization of MJHs based on physical-chemical properties,
leading to the development of more targeted and efficacious
cancer therapeutics. For instance, insights gained from our
analysis, such as the correlation between specific molecular
features and activities of MJHs like VDA and toxicity, can
guide the synthetic modifications of existing molecules to
enhance their therapeutic efficacy while minimizing adverse
effects. Additionally, the identification of key structural
properties, such as the distribution of sigma and valence
electrons, offers valuable guidance for the design of new
compounds with improved NIR light absorption and efficient
vibronic transitions, thereby enhancing their anticancer effects.
By applying our physical-chemical methodology iteratively, in
conjunction with experimental validations, researchers can
sequentially refine and optimize anticancer molecules in the
most rational way.
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